Influence of “diagnostic delay” upon cancer survival: an analysis of five tumour sites

Miquel Porta, Manuel Gallén, Núria Malats, Josep Planas

Abstract

Study objective—The aim was to assess the relationship between survival, tumour stage, and the interval from first symptom to diagnosis (SDI, or duration of symptoms).

Design—This was a retrospective follow-up study of a cohort of patients registered in the tumour registry of the Hospital del Mar (Barcelona).

Setting—Hospital based tumour registry, with patients derived mainly from the City of Barcelona.

Participants—1247 cases of lung, breast, stomach, colon, or rectal cancer were analysed using survival curves and Cox proportional hazards regression. Subjects (mean age 63-6 years) were followed for a median length of 12-9 months after diagnosis. At the time of diagnosis one fourth of patients had disseminated disease.

Measurements and main results—Based on clinical records, a physician registered the onset time of the first symptom attributable to cancer (from which the SDI is computed), as well as the tumour stage at diagnosis. Other measurements followed standard tumour registry procedures. Overall, the crude mean SDI was 5-15 months (SD 8-03, median 2-03); only 24-5% of cases had an SDI less than a month. Crude mean SDIs by anatomical site were as follows: lung cancer 3-07 months; breast 7-44; stomach 5-34; colon 5-74; rectum 5-03.

Tumour extension did not appear to be significantly influenced by SDI, only breast cancer showing a distinct pattern of increased extension with increasing SDI. As expected, the probability of survival decreased monotonically with increasing stage in all sites. Tumour site was also a significant predictor of survival, which at one year ranged from 93% for breast cancer to 28% for lung cancer. However, a longer SDI tended sometimes to be associated with a better chance of survival, a fact that was most apparent in colon cancer. All Cox proportional hazards models showed a consistent picture: SDI was not a significant predictor of survival (age and sex adjusted hazard ratios ranging from 0.97 to 1.01), neither was sex; age did predict survival, and so did site and stage.

Conclusions—The results provide further evidence of a very weak relationship between SDI and tumour stage at diagnosis (except for breast cancer), and between SDI and survival, thus emphasising some limitations within which early clinical detection operates. They also suggest that in addition to reflecting patient and physician behaviour, as well as the functioning of the health system, SDI may be influenced by the biological behaviour of the tumour.

Conflicting results have been found in studies analysing the influence upon cancer prognosis of the time interval between onset of symptoms and diagnosis (SDI, or duration of symptoms). Some authors show1-6 or imply7-9 that a relationship exists (eg, the shorter the SDI, the more localised the tumour and the longer the survival), whereas others10-19 have found that long SDIs are not necessarily associated with more disseminated disease or with increased mortality. Indeed, for some cancers it is often accepted: (1) that they are curable if discovered early in the preclinical course, (2) that delay in diagnosis is a most significant factor in poor prognosis, and (3) that the extent of spread at the time of diagnosis and treatment is closely correlated with prognosis.20-28

Nevertheless, the three points need not be equally true. Furthermore, while the degree of differentiation is not always well correlated with the degree of invasiveness or the rapidity of growth,29-30 a shorter clinical history is not uncommonly associated with poorly differentiated cancers.13-14 28-34

Hence, it seems crucial to note that uses of the concept of early detection may hide two very different phenomena: (a) a limited spread of the tumour at the time of diagnosis, and (b) a short time interval between clinical onset of disease and diagnosis. Whereas the latter cannot be assumed to guarantee finding a localised disease, biological characteristics of the tumour, host resistance, and host-tumour interaction do appear to significantly explain its growth,29 30-35 and may thus be of greater prognostic importance than the length of symptomatic illness.

However, few epidemiological studies have formally analysed the influence of the duration of symptoms upon cancer survival, maybe because—as Morrison expressed it—“there is a compelling intuitive appeal to the idea that earlier treatment must work; it seems inconceivable that there might be no gain in finding disease early.”34

The primary goal of the present study was to assess the relationship between SDI, tumour stage, and survival in five cancer anatomical sites: lung, breast, stomach, colon, and rectum.
Methods
Data from the tumour registry of the Hospital del Mar (TRHM), a 450 bed teaching hospital primarily serving a low income area in Barcelona, were used in the present study. A detailed description of TRHM has been previously published. In summary, this is a hospital based tumour registry initiated in 1978 and currently including about 4000 neoplasms. It follows the data collection procedures established by a regional collaborative Oncology group. All information is obtained from clinical records. Over 95% of tumours are microscopically confirmed, 2% are of unknown origin, and 3% are double neoplasms; 96.8% of cases are residents of the city of Barcelona.

Data collection, quality assurance and computerisation are all conducted on site by a research fellow under the supervision of an oncologist and an epidemiologist. The SDI is computed from the date of histological diagnosis and the first symptom attributable to cancer, as recorded in clinical notes. Stage is classified as local, regional, or disseminated; tumours with regional dissemination are those with regional nodal involvement (N+) or invasion of structures surrounding the primary tumour. In order to achieve a minimum amount of follow up, we only selected cases registered between 1978 and 1987. Analysis was also restricted to the five most common tumours: lung, breast, colon, rectum, and stomach. Of the recorded cases, 3.2% were excluded from the analysis since the SDI was unspecified.

To assess the relationship between a categorical variable with more than two levels and a normally distributed quantitative variable the Kruskal-Wallis test was used. Age and sex adjusted geometric means of sdi were obtained for each site and stage by least squares linear regression of the natural logarithmic transformation of sdi to the corresponding variables.

Survival curves were estimated by the Kaplan-Meier method and compared by means of a generalisation of the non-parametric Wilcoxon test to censored data for the case of variables with two categories, and of a generalised Kruskal-Wallis test for comparing three or more samples. Cox proportional hazards regression was used to estimate the hazard rate of sdi (the hypothesised primary explanatory variable), adjusted for age, sex, and tumour site and stage (the potential confounding and effect modifying variables). Hazard ratios were used to describe the relationship between the explanatory variable and survival time. Hazard ratios are the ratio of the hazard rates for values of variables unfavourable to survival to those of variables favourable to survival; the measure can be interpreted as the approximate instantaneous relative risk associated with a particular factor, either continuous (eg, sdi, age) or categorical (eg, regional or localised tumour stage). Computations were performed by using Pecan and the SAS PHGLM procedure developed by Harrell; the two programs yielded identical results. Both the “Z:PH” statistic and inspection of plots of log minus log survival function against time were used to check the proportional hazards assumption. The significance level was established at 0.05 and all p values were two tailed.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Characteristics of cases, and interval from first symptom to diagnosis (SDI), by primary tumour site.</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Variable</strong></td>
<td><strong>Breast</strong></td>
</tr>
<tr>
<td>1 No of cases</td>
<td>335</td>
</tr>
<tr>
<td>Follow up (median)^a</td>
<td>36-9</td>
</tr>
<tr>
<td>Uncensored (%)</td>
<td>37-0</td>
</tr>
<tr>
<td>Sex (% females)</td>
<td>100</td>
</tr>
<tr>
<td>Age (mean, years)</td>
<td>57-9</td>
</tr>
<tr>
<td>Stage (%)</td>
<td></td>
</tr>
<tr>
<td>Local</td>
<td>38-5</td>
</tr>
<tr>
<td>Regional</td>
<td>43-0</td>
</tr>
<tr>
<td>Disseminated</td>
<td>13-1</td>
</tr>
<tr>
<td>Unspecified</td>
<td>5-4</td>
</tr>
<tr>
<td>2 Crude SDI^b</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>7-44</td>
</tr>
<tr>
<td>SD</td>
<td>11-19</td>
</tr>
<tr>
<td>Median</td>
<td>3-02</td>
</tr>
<tr>
<td>% ≥ 5 months</td>
<td>35-8</td>
</tr>
<tr>
<td>Q3-Q1^c</td>
<td>7-97</td>
</tr>
<tr>
<td>3 Age adjusted SDI by sex (geometric mean)^d</td>
<td></td>
</tr>
<tr>
<td>Females</td>
<td>3-08</td>
</tr>
<tr>
<td>Males</td>
<td>—</td>
</tr>
<tr>
<td>4 Age and sex adjusted SDI by stage (geometric mean)^e</td>
<td></td>
</tr>
<tr>
<td>Local</td>
<td>2-54</td>
</tr>
<tr>
<td>Regional</td>
<td>3-39</td>
</tr>
<tr>
<td>Disseminated</td>
<td>4-24</td>
</tr>
<tr>
<td>Unspecified</td>
<td>2-03</td>
</tr>
<tr>
<td>Total</td>
<td>3-04</td>
</tr>
</tbody>
</table>

^a In months.
^b Q3-Q1 = the difference between the upper quartile (or 75th percentile) and the lower quartile (or 25th percentile).

Results
The 1247 subjects in this study were followed for a median length of 12.9 months after diagnosis, with a mean of 23.7 months (table I). Follow up varied from a median of 36.9 months for breast cancer cases, of whom 37% died, to a median of 5.9 months for lung cancer cases, of whom 84% died. Only 67 cases (5.4%) were lost to follow up, and all but 215 patients (17.2%) were followed for two years or to death. Overall, 751 (60.2%) members of this dynamic cohort died during follow up and were thus uncensored. No anatomical site showed statistically significant differences between sexes in the proportion of uncensored cases.

Mean age was 63.6 years (SD 12.9, median 64.4). One fourth of cases had disseminated disease at the time of diagnosis. As expected, differences in stage distributions among anatomical sites were statistically significant ($X^2_{[12]} = 121$, $p < 0.0001$); lung and to a lesser extent stomach, showed more disseminated patterns.

As shown in section 2 of table I, the crude mean sdi was rather large, 5.15 months (SD 8.03, median 2 months). Only 24.5% of cases had an sdi less than a month; 75% of cases had an sdi less than 5.02 months. Interestingly, breast cancer showed the largest sdi and lung cancer the shortest interval, with colorectal and gastric cancer presenting intermediate values ($p < 0.0001$). Sex had barely any influence upon sdi (section 3, table I).

Tumour extension at diagnosis did not appear to be significantly influenced by the duration of symptoms (section 4, table I). Only breast cancer showed a distinct pattern of increased extension with increasing sdi; the differences in sdi between the local and regional stages ($p = 0.036$), and between the local and disseminated stages.
(p = 0.01) reached statistical significance. No other site showed statistically significant differences among stages. The overall age and sex adjusted SDI for lung cancer is significantly lower than the corresponding value in each of the four other anatomical sites (p < 0.01 in all cases).

As can be seen in table II, the probability of survival at one and at five years decreased monotonically with increasing stage in all sites. As expected, tumour site was also a significant predictor of survival, which at one year ranged from 93% for breast cancer to 28% for lung cancer.

Cases were next divided in every site/stage subgroup according to whether their SDI was above or below the site median SDI (previously shown in table I), and their median survival was computed (table II); obviously, when over 50% of cases in a subgroup were alive the latter could not be estimated. For example, 50% of cases with local stomach cancer whose SDI was below 2.98 months (the group median SDI) survived >29 months; but those whose SDI was above the group median SDI survived >62 months. Surprisingly a longer SDI tended sometimes to be associated with a better chance of survival. This was most apparent in colon cancer, where all subgroups above the median SDI yielded longer survival times than their counterparts below the median SDI. The phenomenon was also observed in localised breast cancer, localised and regional gastric cancer, regional and disseminated rectal cancer, as well as in disseminated lung cancer. While some of the differences in survival were minor and most could be due to chance, the lack of a consistent, positive relationship between survival and SDI and survival is unmistakable. Purely to illustrate this point, fig 1 depicts the survival distributions of breast and rectal cancer cases above and below each site group median SDI.

Results of Cox proportional hazards analysis appear in table III. All models show a consistent picture: SDI was not a significant predictor of survival (age and sex adjusted hazard ratios ranging from 0·97 to 1·01), neither was sex; age did predict survival, and so did site and stage.

We finally analysed the relationship between SDI and survival in the four site/stage subgroups with over 100 cases. The corresponding age and sex adjusted SDI hazard ratios were as follows: lung, regional, 0·99; lung, disseminated, 1·01; breast, local, 0·97; and breast, regional, 1·00 (p > 0·45 in all cases). Hence, even within specific tumour stages, SDI did not appear related to survival time.

Discussion
The findings provide further evidence of a lack of a consistent relationship between SDI and survival, and of a very weak relationship between SDI and tumour stage at diagnosis.10-20 Specifically, in the population served by our hospital, tumour extension at the time of diagnosis did not appear to be significantly influenced by SDI or duration of symptoms (with the exception of breast cancer). No excess risk of mortality associated with longer SDI was observed either: age and sex adjusted hazard ratios were always close to unity. Among the variables analysed, only age, tumour site, and extension were meaningfully related to survival time.

Differences in SDI among tumour sites were quite remarkable, particularly between breast and
lung neoplasms. This finding seems coherent with the notion that SDI may partially be influenced by the biological behaviour of the tumour. Clinical ("axiometric") measures of tumour growth may, in this respect, be of relevance.

In addition to well known limitations of hospital based tumour registries, the following considerations should be taken into account when interpreting the findings. Since it is not always clinically efficient to estimate the exact time of the onset of symptoms, our measure of SDI (which, as mentioned, was estimated from clinical records) was relatively crude. In fact, in a separate study currently underway, based on a structured patient interview targeting SDI phases, we observed slightly longer intervals than those registered based upon clinical notes. Whereas we deem it unlikely that a differential bias favouring any specific subgroup occurred in our study, we cannot rule out the possibility that non-differential measurement errors (including recall errors) might have obscured a relationship between the duration of symptoms and survival. There is no doubt that more accurate measurements of SDI phases and of tumour stage are needed; with some exceptions, they are more feasible in specific ad hoc studies than in tumour registry analyses. One must also seriously consider the possibility that in the low income population here analysed the range of SDI values was actually not wide enough for an effect upon survival to be evidenced.

We analysed a small number of factors. Indeed, we considered the duration of symptoms to be a highly complex variable reflecting patient and physician behaviour, to the clinical course,1 2 13 59 the functioning of the health system,6 8 14 47 sociocultural values,5 58 60-65 and tumour biology.1 13 34 46 Certainly, the many variables likely to mediate the SDI—prognosis relationship are not easy to measure accurately in large numbers of patients. Still, epidemiological analyses which meaningfully integrate the different clinical, biological, and psychosocial factors involved are much in need.

Even though several subgroups here analysed have small numbers, the study allowed comparison of the five more frequent tumours (accounting for over half of all cancer cases) in most developed countries. While it is not implausible that differences in prognosis between SDI subgroups might be uncovered by an analysis based on a larger number of cases, we think it unlikely that their magnitude is large.

It is also worth emphasising that the primary goal of the current analysis was to assess the relationship between SDI and tumour stage, and between SDI and survival, rather than to identify a model that would fit the data.

Additionally, we suggest that interpretation of the present results may also benefit from the following conceptual considerations. Prognosis of many tumours appears to be largely influenced by factors active in the presymptomatic phases of the illness, the symptomatic phase often representing a much smaller fraction of the natural history of the malignancy.4 7 7 86-69 Accordingly, variations in SDI might account for only a limited portion of differences in stage at diagnosis, and of differences in survival. The group of patients presenting within a short time after onset of symptoms is likely to comprise a mixture of patients with more virulent tumours and of patients with less biologically active tumours but seeking care sooner. Conversely, patients presenting long after onset of symptoms may include patients with relatively benign tumours as well as patients with more aggressive disease who greatly delay seeking care. It is the biological and clinical heterogeneity of patients with similar SDI that makes this interval somewhat misleading (though fascinating). In fact, it is possible an error to focus exclusively on the (quantitative) time dimension: clinical (qualitative) changes experienced during tumour progression have been found to be an independent determinant of prognosis.48-51

In our view, a relevant question to pose is: does tumour behaviour influence patient behaviour or is it the other way round? Our hypothesis is that two simultaneous processes interact: (a) the promptness with which a person seeks medical attention and the specific medical path he or she follows influence the stage at which cancer is diagnosed, and the subsequent disease course; and (b) in turn, the biological and clinical behaviour of the tumour influence both the patient’s perception, assessment, and response to symptoms, and the pathway followed among the

---

Table III Cox proportional hazards survival analysis.

<table>
<thead>
<tr>
<th>Model</th>
<th>Regression coefficient</th>
<th>Standard error</th>
<th>Hazard ratio</th>
<th>Hazard ratio error 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 SDI</td>
<td>0.00279</td>
<td>0.00491</td>
<td>1.003</td>
<td>0.99-1.01</td>
</tr>
<tr>
<td>2 SDI Age</td>
<td>0.00391</td>
<td>0.00488</td>
<td>1.003</td>
<td>0.99-1.01</td>
</tr>
<tr>
<td>3 SDI Sex</td>
<td>0.01689</td>
<td>0.00329</td>
<td>1.017*</td>
<td>1.01-1.02</td>
</tr>
<tr>
<td>4 SDI Age</td>
<td>0.00280</td>
<td>0.00490</td>
<td>1.003</td>
<td>0.99-1.01</td>
</tr>
<tr>
<td>5 Stage Regional</td>
<td>0.07350</td>
<td>0.01450</td>
<td>2.087*</td>
<td>1.70-2.56</td>
</tr>
<tr>
<td>6 Stage Unknown</td>
<td>0.09140</td>
<td>0.01630</td>
<td>2.569*</td>
<td>1.86-3.54</td>
</tr>
<tr>
<td>7 Site Colon</td>
<td>0.58730</td>
<td>0.14870</td>
<td>1.799*</td>
<td>1.34-2.41</td>
</tr>
<tr>
<td>8 Site Rectum</td>
<td>0.76500</td>
<td>0.16310</td>
<td>2.139*</td>
<td>1.55-2.95</td>
</tr>
<tr>
<td>SDI</td>
<td>0.00020</td>
<td>0.00480</td>
<td>0.999</td>
<td>0.991-1.01</td>
</tr>
</tbody>
</table>

CI = Confidence interval; SDI = Interval from first symptom to diagnosis

* Ratio to hazard rates for categories of each variable. The ratio contains the hazard rate for the "unfavourable to survival" category in the numerator and the "favourable to survival" category in the denominator. Favourable or reference categories are female, local stage, and breast site. * p < 0.001
several usually available within a health care system. The resulting 
sdt, duration of symptoms, or “progression interval”49 (terms we deem 
more neutral and appropriate than diagnostic “delay”) is also modified 
by psychosocial factors (such as patient’s personality, education, income, 
and access to care) and by other environmental factors (eg, the prevalence of 
cancer influences the predictive value of clinical signs, thus 
determining physician’s diagnostic accuracy.70)
An elaboration of this model is beyond the scope of 
this paper.

Given that the rate of tumour growth is 
commonly related both to survival and 
to the likelihood of specific 
(such as gaining tumours being more amenable to early 
clinical detection),27 33 34 69 evaluators of early clinical 
detection programmes should consider the potential for 
clinical length bias and clinical lead time bias to occur. Early detection must be 
measured in terms of tumour stage rather than 
duration of symptoms.

Although the idea that many cancers are 
curable if discovered early in the clinical course is 
clinically appealing, and in spite of solid scientific 
evidence that high quality screening programmes 
 improve prognosis of some cancers,67 33 34 71 the 
present results show that in a particular 
population group observed under natural 
conditions, the interval from first symptom to 
diagnosis very weakly influences the spread of 
the tumour at the time of diagnosis, and does not 
 affect survival beyond the effect of stage at 
diagnosis. In our view, this cannot be taken 
to imply that specific interventions aimed at 
speeding up diagnosis in individuals are 
ineffective. There undoubtedly is an ethical 
obligation to detect, diagnose, and treat promptly 
individuals presenting with symptoms. 

Furthermore, diagnostic and treatment delays 
carried by malfunctioning of the health system 
must be reduced. Yet from a public health perspective one question remains: how wide a 
community impact in terms of mortality 
reduction can a decrease in sdt have? While 
secondary prevention undoubtedly has a role in 
medical care, findings such as ours emphasise 
some limitations within which it operates.72 

More efforts should be devoted towards 
the discovery of 
better tools for presymptomatic detection of 
cancer. Primary prevention remains the 
outstanding top priority for cancer control.

This work was partially made possible by grants from 
the Fondo de Investigación Sanitaria (No 88/2794, No 
88/0564) and from the Instituto Municipal d’Investigació 
Mèdica (IM1875138/9). The authors are also grateful to 
Robert H Fletcher for scientific advice, and to Deborah 
Barnes, Rosa Arboix, Jordi Alonso, and David 
MacFarlane for technical assistance. 

Presented to the 1990 European meeting of the 
International Epidemiological Association (IEA), 
Granada, Spain, 14–16 February 1990.

1 Rowe-Jones DC, Aylett SO. Delay in treatment in 
2 MacArthur C, Smith A. Factors associated with speed of 
diagnosis, referral, and treatment in colorectal cancer. J 
Epidemiol Community Health 1984; 38: 122–6.
3 Funk DP. The role of patient delay in the evaluation of 
4 Robinson E, Mohilever J, Zidan J, Sapir D. Colorectal 
cancer: incidence, delay in diagnosis and stage of disease. 
5 Ackdas A, Kirkali Z, Remzi D. The role of delay in stage-I11 
6 GIVIO (Interdisciplinary group for cancer care evaluation). 
Reducing diagnostic delay in breast cancer. Possible 
7 Robbins GF, Conte AJ, Leach JE, Macdonald MG. Delay in 
diagnosis and treatment of cancer. JAMA 1950; 143: 
346–8.
8 Robinson E. The fight against delay in the diagnosis of 
9 Oliver RTD. Factors contributing to delay in diagnosis of 
10 Brookes VS, Waterhouse JAH, Powell DJ. Carcinoma of the 
stomach: a 10-year survey of results and of factors affecting 
11 Keddie N, Hargreave A. Symptoms of carcinoma of the 
12 Lim BS, Dennis CR, Gardner B, Newman J. Analysis of 
13 Irvin TT, Greaney MG. Duration of symptoms and 
prognosis of carcinoma of the colon and rectum. Surg 
14 Holloway HD, Hardcastle JD. Delay in diagnosis and 
treatment of symptomatic colorectal cancer. Lancet 1979; i: 
309–11.
15 Pescatori M, Mungone G, Maria G. Delay in diagnosis of 
colorectal cancer. Lancet 1979; i: 1137.
16 Bassett ML, Bennett SA, Goulston KJ. Colorectal cancer. A 
17 McDermott F, Hughes E, Pihl E, Milne B, Price A. 
Symptom duration and survival prospects in carcinoma of the 
18 Pescatori M, Maria G, Beltrani B, Mattana C. Site, 
emergency, and duration of symptoms in the 
prognosis of colorectal cancer. Dis Colon Rectum 1982; 
19 Jolly KD, Scott JP, MacKinnon, Clarke AM. Diagnosis and 
20 Mates Jimenez J, Carbo Pereseque J, Rodrigo Muñoz S, 
Pajares Garcia JM. Influencia de la demora diagnostic 
edad y diferenciación tumoral de los adenocarcinomas de 
colon sobre el pronostico de los mismos. Rev Esp End Digest 
21 Fowler WC, Freeman AC, Hulka BS, et al. Delays in 
cervical cancer care: assessment of the cancer care 
provider characteristics. In: Advances in cancer control: 
22 Robinson E, Mohilever J, Zidan J, Sapir D. Delay in 
diagnosis of cancer. Possible effect on the stage of 
23 Sneepen O, Hansen LM. Presenting symptoms and 
treatment delay in osteosarcoma and Ewing’s sarcoma. 
Acta Radiol (Oncol.) 1984; 23: 159–62.
24 Malamed MR, Fleithinger BJ, Zamon MB, Healen RT, 
Percibuck WA, Martin N. Screening for early lung cancer. 
Results of the Memorial Sloan-Kettering study in New 
25 Smith EM, Anderson B. The effects of symptoms and delay 
in seeking diagnosis of stage of disease at diagnosis among 
women with cancers of the ovary. Cancer 1985; 56: 2727–32.
26 Graffsin H, Olson SA. Patient’s and doctor’s delay in 
carcinoma of the colon and rectum. J Surg Oncol 1986; 31: 
188–90.
27 Saracci R. Neoplasms. In: Holland WW, Detels R, Knox G, 
28 LaMont JT, Iselbacher KJ. Diseases of the small and large 
intestine. In: Petersdorf RG, Adams RD, Braunwald E, 
Iselbacher KJ, Martin JB, Wilson JD, eds. Harrison’s 
principles of internal medicine, 10th ed. New York: 
30 Liotta LA, Stert-Steinenson WG. Principles of molecular 
cell biology of cancer: cancer metastasis. In: DeVita VT, 
Hellman S, Rosenberg SA, eds. Cancer. Principles and 
practice of oncology, 3rd ed. Philadelphia: Lippincott, 1985: 
98–115.
31 McDermott FT, Hughes ESR, Pihl E, Milne BJ, Price AB. 
Prognosis in relation to symptom duration in colon cancer. 
32 Myers WP. Cancer of the Internal Medicine: an internist’s 
approach to cancer and its medical manifestations. In: 
Beeson PB, McDermott W, Wynaarden JB, eds. Cecil 
textbook of medicine, 15th ed. Philadelphia: W B Saunders, 
33 Hulka BS. Screening for cancer: lessons learned. J Occup 
34 Morrison AS. Screening in chronic disease. New York: 
35 Nowell PC. Molecular events in tumour development 
36 Kerr JB. Molecular genetics of colorectal carcinoma 
37 Roberts AB, Sporn MB. Principles of molecular cell biology 
of cancer: growth factors related to transformation. In: 
DeVita VT, Hellman S, Rosenberg SA, eds. Cancer. Principles and 
La generalizada Wilcoxon test for comparing arbitrarily singly-censored samples. 


Influence of "diagnostic delay" upon cancer survival: an analysis of five tumour sites.

M Porta, M Gallén, N Malats and J Planas

*J Epidemiol Community Health* 1991 45: 225-230
doi: 10.1136/jech.45.3.225

Updated information and services can be found at:
http://jech.bmj.com/content/45/3/225

**Email alerting service**

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

**Notes**

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/