Tar, nicotine, and carbon monoxide yields of some Nigerian cigarettes

A A Awotedi, T W Higenbottam, and B O Onadeko

From the Department of Medicine, University College Hospital, Ibadan, Nigeria, and the Respiratory Physiology Department, Papworth Hospital, Papworth Everard, Cambridge CB3 8RE, UK

SUMMARY Fourteen cigarette brands manufactured in Nigeria in 1981 were analysed to determine the tar, nicotine, and carbon monoxide yields. Five of the brands belonged to the high and middle to high tar category (>22 mg/cigarette) and nine to the middle tar (17–22 mg/cigarette) category. None of the cigarettes was in the low to middle and low tar (<17 mg/cigarette) category. The nicotine and carbon monoxide yields were similar to those of European cigarettes. Tobacco companies need to manufacture low tar cigarettes in the third world as is the practice in the economically developed parts of the world.

Over the past three decades researchers have drawn attention to the various health problems caused by cigarette smoking. Overwhelming evidence incriminated smoking to varying extents in the pathogenesis of chronic obstructive bronchitis and coronary heart disease, as well as carcinoma of the bronchus, larynx, oesophagus, and bladder. Attention has also been focused on the constituents of cigarette smoke implicated in the pathogenesis of these different diseases. The well recognised are tar, nicotine, and carbon monoxide, while others of lesser importance include nitrogen oxides, cyanide, and acrolein. Tar and nicotine are the major constituents of cigarette smoke implicated as causative factors for coronary heart disease and carcinoma of the bronchus.

In recognition of these facts various governments have entered agreements with tobacco companies to lower the tar and nicotine yields of their products. Smoking was introduced to Africa sometime in the fourteenth century and since then the habit has been on the increase. Earlier beliefs that the diseases related to smoking were not found in the African have changed with the findings from recent studies from parts of Africa. Not only are these diseases present, but in some cases the incidence is increasing. There is also a suspicion that the tobacco companies because of the anti-tobacco lobby in Europe and America are diverting their attention to the third world, where the promotion of cigarette smoking is unrestricted.

There are no data on the tar, nicotine, and carbon monoxide yields of cigarette manufactured in Nigeria and most African countries. The present study reports the analysis of smoke constituents of cigarettes available in Nigeria.

Material and methods

Ten packets of each of the 14 commonly available cigarette brands in Nigeria were purchased from different shopping centres in the town. All the cigarettes had been recently manufactured. The cigarettes were smoked in a Filtrona smoking machine and later analysed for tar, nicotine, and carbon monoxide yields using the method agreed by the laboratory of the government chemist and the tobacco companies. The tar yield was classified as:

High and (middle to high)—Values greater than 22 mg/cigarette.

Middle—Value 17–22 mg/cigarette.

(Low to middle) and low—Less than 17 mg/cigarette.

The costs of the different cigarette brands as sold in the local shops were noted. A structured questionnaire was administered to 1000 people specifically asking which of the cigarette brands they smoked and their cash earning power. The subjects were randomly selected.
The socioeconomic groups were classified as:

High income—
Annual income was about ₦ 10 000 and above.

Middle income—
Annual income ₦ 3 000—₦ 10 000, and

Low income— Annual income below ₦ 3 000.

Results

Table 1 shows the tar, nicotine, and carbon monoxide yields of the different cigarette brands analysed. Also included in this table is the percentage of the smokers interviewed smoking each brand of cigarette.

<table>
<thead>
<tr>
<th>Cigarette brands</th>
<th>Tar (mg)</th>
<th>Nicotine (mg)</th>
<th>Carbon monoxide (mg)</th>
<th>% of people smoking each brand</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Benson and Hedges luxury menthol</td>
<td>19</td>
<td>1.5</td>
<td>17.1</td>
<td>31.2</td>
</tr>
<tr>
<td>B Benson and Hedges special filter</td>
<td>20</td>
<td>1.6</td>
<td>15.6</td>
<td>2.6</td>
</tr>
<tr>
<td>C State Express 555 filter king</td>
<td>20</td>
<td>1.7</td>
<td>15.1</td>
<td>2.5</td>
</tr>
<tr>
<td>D State Express 555 International</td>
<td>21</td>
<td>1.9</td>
<td>15.7</td>
<td>3.0</td>
</tr>
<tr>
<td>E Target</td>
<td>17</td>
<td>1.1</td>
<td>15.8</td>
<td>2.0</td>
</tr>
<tr>
<td>F Varsity Menthol</td>
<td>22</td>
<td>1.3</td>
<td>17.9</td>
<td>0.6</td>
</tr>
<tr>
<td>G Sportsman king size</td>
<td>22</td>
<td>1.5</td>
<td>16.6</td>
<td>0.6</td>
</tr>
<tr>
<td>H Embassy</td>
<td>24</td>
<td>1.5</td>
<td>18.8</td>
<td>0.6</td>
</tr>
<tr>
<td>I John Player Gold Leaf</td>
<td>27</td>
<td>1.7</td>
<td>20.0</td>
<td>2.3</td>
</tr>
<tr>
<td>J 3 Ring</td>
<td>19</td>
<td>1.2</td>
<td>16.3</td>
<td>0.3</td>
</tr>
<tr>
<td>K Sweet Menthol filter</td>
<td>20</td>
<td>1.2</td>
<td>17.3</td>
<td>3.2</td>
</tr>
<tr>
<td>L Sweet Menthol king size filter</td>
<td>21</td>
<td>1.6</td>
<td>16.8</td>
<td>0.6</td>
</tr>
<tr>
<td>M Mars filter</td>
<td>20</td>
<td>1.6</td>
<td>17.0</td>
<td>0.6</td>
</tr>
<tr>
<td>N Bicycle</td>
<td>27</td>
<td>1.7</td>
<td>20.0</td>
<td>2.2</td>
</tr>
</tbody>
</table>

2-0% belong to other cigarette brands not analysed.

None of the cigarettes analysed was in the low tar category (table 2), five were in the high to middle and high group, and the remaining nine were in the middle tar category. Four brands in the high tar category were smoked by those in the middle socioeconomic group (table 3). The five high tar cigarette brands when polled together were consumed by 27.6% of the people interviewed.

<table>
<thead>
<tr>
<th>Tar yield analysis of Nigerian cigarettes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tar (mg/cigarette)</td>
</tr>
<tr>
<td>High and middle to high</td>
</tr>
<tr>
<td>Middle</td>
</tr>
<tr>
<td>Low to middle and low</td>
</tr>
</tbody>
</table>

Discussion

Both governments and various antismoking organisations have made concerted efforts to persuade tobacco companies to produce low tar and low nicotine cigarettes. Such measures have led to reductions of 49%, 31%, and 11% in the tar, nicotine, and carbon monoxide yields respectively of cigarettes manufactured between 1934 and 1979 in Great Britain/United Kingdom.16

The only available data on the yields from cigarettes manufactured in Africa showed a disparity in tar yields between similar brands of cigarettes sold in Nairobi, Kenya, and the United Kingdom as shown by the findings that the State Express 555 sold in Kenya contained 31 mg tar and 2 mg nicotine but the same brand in the United Kingdom had 18 mg tar and 0.9 mg nicotine.17

Our study showed that five brands belonged to the high tar category and would have attracted tax surcharge if sold in the UK.18 It is remarkable that none of the cigarettes belonged to the low tar category, which is the trend among tobacco companies in Europe and America. It is also interesting that the cigarettes consumed by those in low and middle income groups belong predominantly to the high tar category and are relatively cheap. The implications of this are that although these people may smoke fewer cigarettes, in terms of total tar consumption they may be at the same risk of developing lung cancer as someone who smokes more low tar cigarettes. It is difficult for any government to ban smoking because of economic considerations and the only alternative would be production of safer cigarettes.

Lowering the tar and nicotine yields of cigarettes has been reported to cause some decrease in the incidence of some smoking related diseases.19-22 In view of the above observations tobacco companies need to conform to international standards in terms of yields from cigarettes sold in Africa. The various
governments must enact legislation to regulate cigarette promotions and for the cigarette packets to carry health warnings as well as imprints of tar, nicotine, and carbon monoxide yields as practised in Europe and America. Unfortunately a recent attempt in Nigeria to enact such legislation was rejected because of lack of data. Perhaps with this information the issue may be more favourably considered in future. If action is not taken now we may be supplanting the various infective disorders related to poverty with tobacco related diseases, a problem that has been referred to as "the coming epidemic."

We acknowledge the expertise of Graham Copeland of the laboratory of government chemist, United Kingdom for his analysis of the various cigarettes. This study was partly funded by the University of Ibadan Senate Research Grant 2/SRG3/107.

References

A A Awotedu, T W Higenbottom, and B O Onadeko

Tar, nicotine, and carbon monoxide yields of some Nigerian cigarettes.
A A Awotedu, T W Higenbottam and B O Onadeko

J Epidemiol Community Health 1983 37: 218-220
doi: 10.1136/jech.37.3.218

Updated information and services can be found at:
http://jech.bmj.com/content/37/3/218

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/