Analysis of completed reproductive histories: a cautionary tale

JEAN GOLDING, 1 N R BUTLER,1 AND R G NEWCOMBE2
From the Department of Child Health, 1 University of Bristol, Bristol, and the Department of Medical Statistics, 2 Welsh National School of Medicine, Cardiff, UK

SUMMARY Recent authors have suggested that cross-sectional studies of adverse outcome of pregnancy are misleading, and that the only valid method of analysis controls for eventual number of pregnancies. The present study shows, by simple examples, that such a method produces results that cannot be interpreted in the way claimed for them.

The fact that various adverse outcomes of pregnancy may be related to birth order has exercised epidemiologists, clinicians, and geneticists intermittently throughout the past 70 years.1-4 On various occasions new methods of looking at the problem have emerged. From time to time it has been suggested that controlling for the total number of pregnancies that the woman eventually had would be more meaningful than any cross-sectional analysis.4-7 This idea was revived by two publications using this method, one by Roman et al8 analysing information obtained from women doctors and the other by Bakketeig and Hoffman8 using linked birth records in Norway.

Man—or rather woman—is not an experimental animal. One cannot randomly mate 10 000 women on various occasions and document the outcomes of all the pregnancies that ensue. If it were possible to do this the problem of analysis and interpretation would be relatively simple. Reality is much more complex.

It is not our aim to produce an ideal method of analysis of birth order effects. On the contrary, we wish merely to point out that the so-called “longitudinal” method of analysis has a major flaw that makes interpretation of the data difficult. To show this we will generate two sets of reproductive histories that obey fixed rules. We will then apply the longitudinal method of analysis. If the method were valid those rules with which the data were generated should be shown.

In both data sets we make two fundamental assumptions:

1. that women stop reproducing once their desired family size has been reached.

2. that regardless of desired family size, there is restriction of fertility, unrelated to outcome of pregnancy. Such infertility might be due to either psychological, medical, or social factors.

Creation of the first set of reproductive histories

ASSUMPTIONS

1. Suppose that the risk of fetal death is constant at 20% at each conception.

2. Suppose that the desired family size consists of: one child in 5% of families, two children in 30% of families, three in 40%, four in 15%, and five children or more in 10% of the remainder.

3. Suppose that the probability of ceasing to be fertile after any pregnancy is 15%.

Consider a population of 10 000 women expecting their first infant; on average 8000 of these pregnancies will result in live births and 2000 in fetal deaths. On average 400, 5% of the 8000 women, will be content with just one live child, and 1140, 15% of the remainder, will become infertile. Thus 1540 (400 + 1140) women will have a reproductive history of just one live birth, and 6460 will conceive again. Of the 2000 women who had a fetal death, an average of 300 (15%) will become infertile and 1700 will conceive again. Continuing in this way it is possible to work out the numbers of women who would have different reproductive histories (table 1).

RESULT OF CONTROLLING FOR NUMBER OF PREGNANCIES

The mainstay of the longitudinal method of analysis is to control for the total number of pregnancies and
Jean Golding, N R Butler, and R G Newcombe

Table 1 Result of applying the first simple assumptions concerning risk of fetal death, desired family size, and secondary infertility to 10 000 hypothetical women

<table>
<thead>
<tr>
<th>Pregnancies</th>
<th>Frequency</th>
<th>Pregnancies</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>One pregnancy only:</td>
<td></td>
<td>Four pregnancies only:</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>300.0</td>
<td>DDDD</td>
<td>1.5</td>
</tr>
<tr>
<td>L</td>
<td>1540.0</td>
<td>DDDL</td>
<td>7.6</td>
</tr>
<tr>
<td>Two pregnancies only:</td>
<td></td>
<td>DDLD</td>
<td>5.6</td>
</tr>
<tr>
<td>DD</td>
<td>51.0</td>
<td>DLLD</td>
<td>5.6</td>
</tr>
<tr>
<td>DL</td>
<td>261.8</td>
<td>LDDD</td>
<td>5.6</td>
</tr>
<tr>
<td>LD</td>
<td>193.8</td>
<td>DDDL</td>
<td>62.5</td>
</tr>
<tr>
<td>LL</td>
<td>2162.4</td>
<td>DDL</td>
<td>62.5</td>
</tr>
<tr>
<td>Three pregnancies only:</td>
<td></td>
<td>DLL</td>
<td>15.3</td>
</tr>
<tr>
<td>DDD</td>
<td>8.7</td>
<td>LLD</td>
<td>15.3</td>
</tr>
<tr>
<td>DDL</td>
<td>44.5</td>
<td>LDL</td>
<td>15.3</td>
</tr>
<tr>
<td>DLD</td>
<td>32.9</td>
<td>LLD</td>
<td>62.5</td>
</tr>
<tr>
<td>LDD</td>
<td>32.9</td>
<td>DLL</td>
<td>275.1</td>
</tr>
<tr>
<td>DLL</td>
<td>367.6</td>
<td>LDL</td>
<td>275.1</td>
</tr>
<tr>
<td>LDL</td>
<td>367.6</td>
<td>LLD</td>
<td>275.1</td>
</tr>
<tr>
<td>LLD</td>
<td>90.2</td>
<td>LLL</td>
<td>23.6</td>
</tr>
<tr>
<td>LLL</td>
<td>1618.4</td>
<td>LLLLL</td>
<td>415.1</td>
</tr>
<tr>
<td>Five pregnancies +:</td>
<td></td>
<td>Total No of women</td>
<td>10 000.0</td>
</tr>
</tbody>
</table>

D = Fetal loss.
L = Live birth.

then to look for any birth order effect. Applying this method to the data of table 1 results in the rates of fetal loss shown in table 2 and depicted in fig 1. It may be seen from the right-hand column of table 2 that the overall rate of fetal loss is greatest for women who

<table>
<thead>
<tr>
<th>Final No of pregnancies</th>
<th>Order of pregnancy</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>≥5</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>12</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>18</td>
<td>18</td>
<td>6</td>
<td></td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>29</td>
<td>29</td>
<td>29</td>
<td>6</td>
<td></td>
<td>23</td>
</tr>
<tr>
<td>Total*</td>
<td></td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td></td>
<td>20</td>
</tr>
</tbody>
</table>

*Including women of gravidity ≥5.

Table 2 Percentage fetal loss at each order of pregnancy according to total number of pregnancies, using first set of assumptions

Fig 1 Rate of fetal loss at each pregnancy order according to completed number of pregnancies; data generated using the assumption that the rate of loss is constant, at each pregnancy, for each woman but that women restrict their pregnancy history according to desired family size (first set of assumptions).

Creation of the second data set

ASSUMPTIONS

(1) Suppose that the risk of fetal loss at birth order 1 is 20%, at birth order 2 it is 14%, at birth order 3 it is 20%, at birth order 4 it is 18%, and thereafter it is
20%, 22%, etc with successive pregnancies.

(2) Suppose that the same rules of infertility and desired family size apply as in the first data set.

If we generate obstetric histories as previously we obtain the distribution of completed pregnancies shown in table 3. Applying the method of analysis according to completed family size we obtain the pattern shown in table 4 and illustrated in fig 2. This is similar to the analyses of observed data (figs 3 and 4).

We would like to point out how misleading these pictures are. The authors of the analyses depicted in figs 3 and 4 claim that their data can be interpreted as showing that the risk to any particular woman falls with increasing birth order. Yet we have obtained similar results with data where, by definition, for each woman the risk with birth order was U-shaped.

![Fig 2](https://example.com/fig2.png)

Fig 2 Rate of fetal loss at each pregnancy according to completed number of pregnancies; data generated using the assumption that the rate of loss varies with pregnancy order, that no women are at greater risk than the others, but that women restrict their pregnancy history according to desired family size (second derived data set).

![Fig 3](https://example.com/fig3.png)

Fig 3 Published rate of fetal loss by birth order in a population of women doctors, analysed according to total number of pregnancies.

<table>
<thead>
<tr>
<th>Preganacies</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>One pregnancy only:</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>300-0</td>
</tr>
<tr>
<td>L</td>
<td>1540-0</td>
</tr>
<tr>
<td>Two pregnancies only:</td>
<td></td>
</tr>
<tr>
<td>DD</td>
<td>35-7</td>
</tr>
<tr>
<td>DL</td>
<td>281-4</td>
</tr>
<tr>
<td>LD</td>
<td>135-7</td>
</tr>
<tr>
<td>LL</td>
<td>2324-5</td>
</tr>
<tr>
<td>Three pregnancies only:</td>
<td></td>
</tr>
<tr>
<td>DDD</td>
<td>4-9</td>
</tr>
<tr>
<td>DDL</td>
<td>32-7</td>
</tr>
<tr>
<td>DDL</td>
<td>28-3</td>
</tr>
<tr>
<td>LD</td>
<td>18-4</td>
</tr>
<tr>
<td>DDD</td>
<td>415-0</td>
</tr>
<tr>
<td>DLD</td>
<td>270-2</td>
</tr>
<tr>
<td>LDD</td>
<td>77-6</td>
</tr>
<tr>
<td>LLL</td>
<td>1826-8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Preganacies</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Four pregnancies only:</td>
<td></td>
</tr>
<tr>
<td>DDDDD</td>
<td>0-8</td>
</tr>
<tr>
<td>DDDL</td>
<td>4-3</td>
</tr>
<tr>
<td>DDL</td>
<td>3-7</td>
</tr>
<tr>
<td>DLD</td>
<td>4-3</td>
</tr>
<tr>
<td>LDDD</td>
<td>2-8</td>
</tr>
<tr>
<td>DDDL</td>
<td>47-1</td>
</tr>
<tr>
<td>DLL</td>
<td>55-1</td>
</tr>
<tr>
<td>DLLD</td>
<td>15-6</td>
</tr>
<tr>
<td>DDDL</td>
<td>11-9</td>
</tr>
<tr>
<td>LDDL</td>
<td>10-1</td>
</tr>
<tr>
<td>LD</td>
<td>35-8</td>
</tr>
<tr>
<td>LDD</td>
<td>318-3</td>
</tr>
<tr>
<td>DL</td>
<td>207-5</td>
</tr>
<tr>
<td>LLL</td>
<td>242-5</td>
</tr>
<tr>
<td>LLD</td>
<td>24-0</td>
</tr>
<tr>
<td>LLL</td>
<td>480-2</td>
</tr>
<tr>
<td>Five pregnancies +:</td>
<td></td>
</tr>
<tr>
<td>LLLL</td>
<td>1 245-0</td>
</tr>
<tr>
<td>Total No of women</td>
<td>10 000-0</td>
</tr>
</tbody>
</table>

D = Fetal loss.
L = Live birth.
Jean Golding, N R Butler, and R G Newcombe

Discussion

The purpose of this short paper has been to show that to control for the total number of pregnancies on the file is likely to produce a misleading pattern in any community where a measure of birth control is practised. The fact is that in Western civilisation women who start their obstetric histories with a disaster, or series of disasters, are likely to continue reproducing until they have produced one or more live births, whereas those who start with a successful outcome are likely to curtail their reproductive history as soon as they have reached their desired family size.

How then should one assess how the risk to the fetus varies with birth order? We would like to point out that the last row of each of tables 2 and 4 showed the true patterns that we had imposed on our generated data. It is unfashionable to praise the simple, but in this case the basic cross-sectional approach would have described the effects perfectly. We are not claiming that such an approach is the whole answer to this subject but that it holds the basis for further advance. A deeper analysis in preparation substantiates this. We hope we have shown clearly that the so-called longitudinal approach to this problem leads up a blind alley.

References

3 Slater E. Birth order and maternal age of homosexuals. Lancet 1962; i: 69–70.

Table 4 Percentage of fetal loss at each order of pregnancy according to total number of pregnancies, using second set of assumptions

<table>
<thead>
<tr>
<th>Final No of pregnancies</th>
<th>Order of pregnancy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>16-3</td>
</tr>
<tr>
<td>2</td>
<td>11-4</td>
</tr>
<tr>
<td>3</td>
<td>18-0</td>
</tr>
<tr>
<td>4</td>
<td>30-7</td>
</tr>
<tr>
<td>All women*</td>
<td>20-0</td>
</tr>
</tbody>
</table>

*Including women of gravidity >5.
Analysis of completed reproductive histories: a cautionary tale.
J Golding, N R Butler and R G Newcombe

J Epidemiol Community Health 1983 37: 78-81
doi: 10.1136/jech.37.1.78

Updated information and services can be found at:
http://jech.bmj.com/content/37/1/78

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/