Blood pressure distribution in responders and initial non-responders in a population screening study

ALAN J SILMAN AND CELINA M LOCKE

From the Department of Clinical Epidemiology, London Hospital Medical College, London E1 2AD, UK

SUMMARY The distribution of diastolic blood pressure (DBP) was compared between those who responded to a first written request to attend at their general practitioner’s surgery for screening for hypertension and those who needed more intensive effort encouraging them to attend. After excluding 25% of the population whose current address could not be traced, 92% of the remainder were eventually seen and screened. There was no association between diastolic blood pressure and effort needed to bring the patient to screening, and this applied to all patients both with and without a history of hypertension. Thus it appears that unlike screening for cervical cancer, screening for hypertension may not selectively tend to miss the groups most at risk.

There is general agreement that screening for hypertension should attempt to cover the whole population and that in the United Kingdom, general practice provides the most appropriate baseline population. There are an increasing number of reports of screening for hypertension in general practice where the practice population have been invited to attend for screening. The non-response rate was generally around 20–25%, though in ideal circumstances with enthusiastic general practitioners and a compliant patient population the non-response rate may be as low as 10%. It is important, however, in evaluating the effectiveness of screening for hypertension to assess the prevalence of hypertension in non-responders. Hodes et al. found that of the non-responders who later attended their general practitioner for some other reason, the prevalence of hypertension was higher than that in the screening response group. Fulton et al. observed no difference in history of hypertension between screening responders and non-responders (paper presented at IX International Scientific Meeting, International Epidemiological Association, Edinburgh, 1981).

This study based on the East London Hypertension Programme investigates whether there is an association between response to screening and distribution of blood pressure. In two of the participant practices intensive efforts were undertaken to screen the entire population. Such an analysis also provides data on the yield from screening with increasing effort at detection and is of value for determining the most cost-effective screening strategy.

Subjects and methods

Subjects were all patients aged 50 to 65 on 1 January 1980 in two general practices, one a single-handed practice and the other a health centre based group in the London Borough of Hackney. The patients were identified simultaneously during the compilation of age/sex registers by the local family practitioner committee. Patients for whom subsequent exhaustive inquiries in the practices, local post office, and from neighbours failed to provide a correct current address were excluded from the analysis. Also excluded were nine patients who were in hospital and four who were physically unable to attend a screening clinic. Thus 1042 patients were potentially available to attend.

Each patient was sent an invitation signed by their own general practitioner asking him/her to attend on one of three dates and times for screening. Patients who requested an alternative time were sent a further appointment and counted as a first attendant. All non-attenders had their addresses checked and if appropriate a second “first” invitation was sent to the new address. A failure to attend after the first invitation was followed by a second and, if necessary, a third request. The patient was visited at home if no response had been received after three letters.

All blood pressures were recorded by the same observer (CML), using the Hawksley random zero sphygmomanometer. All blood pressure readings were taken in the right arm, seated. If the initial diastolic blood pressure was greater than 89 mm Hg then a second reading was taken after five minutes and the mean of the two recordings calculated. All diastolic blood pressures were recorded at the fifth
Blood pressure distribution in responders and initial non-responders in a population screening study

sound. The distribution of the population by diastolic blood pressure was achieved by allocation to one of three groups: (1) Normotensive: DBP ≤ 94 mm Hg; (2) Borderline: DBP 95—104 mm Hg; (3) Hypertensive: DBP ≥ 105 mm Hg. Differences in the distribution of diastolic blood pressure between the screening groups were assessed using the χ² test.

Results

Overall, 85 (8.2%) of the patients did not have their blood pressure recorded: of these, only six (0.6%) were outright refusals; the remainder could not be contacted either by post or at home.

Table 1 shows the numbers attending and the response rate at each stage of the screening. Nearly two-thirds of those eligible to attend attended at the first request and about half of the remainder at the second. Though, as expected, the response rate fell as initial non-responders were further screened, surprisingly, 40% of those who received three letters attended at that stage. The 35% “responding” to home visits reflects the proportion at present home and is not a true response rate, refusals, as indicated, being few. The patients were divided up into those with previously known hypertension 113 (11.8%), and those without, as this might have affected response. There was, overall, no difference in distribution of attendance between these two groups (χ² = 4.0, 3 df, p > 0.05) though the proportion of those previously diagnosed “seen at home” (8.0%) was higher than those with no history (4.3%).

There was no observed association between attendance and diastolic blood pressure irrespective of hypertension history (table 2). As the yield, however, for a given level of screening is a function of both hypertension rate and attendance, in the present study nearly 80% of all newly discovered “hypertensives” came as a result of the first request (table 3). Home visiting detected only one patient with diastolic blood pressure > 105 mm Hg (who was a previously diagnosed hypertensive and had lapsed from this treatment). Similarly, of 140 “borderliners” discovered, only six (4%) were picked up at home while 70% were picked up at the first request.

Discussion

There are three reservation in applying these results to other groups. Firstly, our population was from a deprived inner urban area and behaviour patterns may vary in other groups. Nevertheless, we have detected no differences in response by diastolic blood pressure distribution among the different socioeconomic groups in this study. Secondly, we were unable to discover a current address for a quarter of the population identified from the age/sex registers. This group being highly mobile may not be poor attenders and in addition might have a different risk for hypertension. Within the population, though, we were able to identify a subgroup for whom,

Table 1 Patients attending at each stage of screening programme

<table>
<thead>
<tr>
<th>Stage</th>
<th>Requests sent*</th>
<th>No seen (%)</th>
<th>Response rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st request</td>
<td>1042</td>
<td>654 (62.8)</td>
<td>62.8%</td>
</tr>
<tr>
<td>2nd request</td>
<td>398</td>
<td>164 (41.2)</td>
<td>41.2%</td>
</tr>
<tr>
<td>3rd request</td>
<td>224</td>
<td>94 (41.0)</td>
<td>41.0%</td>
</tr>
<tr>
<td>Home visit</td>
<td>130</td>
<td>45 (34.6)</td>
<td>34.6%</td>
</tr>
<tr>
<td>Not seen</td>
<td>85</td>
<td>85 (100)</td>
<td>100%</td>
</tr>
<tr>
<td>Total</td>
<td>1042</td>
<td>(100)</td>
<td></td>
</tr>
</tbody>
</table>

*Number visited in the case of home visits.

Table 2 Diastolic blood pressure by visit of attendance

<table>
<thead>
<tr>
<th>Diastolic BP (mm Hg)</th>
<th>Visit</th>
<th>No</th>
<th>%</th>
<th>95–104</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients with no history of hypertension</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st request</td>
<td>484</td>
<td>68</td>
<td>11.7</td>
<td>29</td>
<td>50</td>
</tr>
<tr>
<td>2nd request</td>
<td>121</td>
<td>16</td>
<td>11.3</td>
<td>5</td>
<td>3.5</td>
</tr>
<tr>
<td>3rd request</td>
<td>72</td>
<td>10</td>
<td>11.8</td>
<td>3</td>
<td>3.5</td>
</tr>
<tr>
<td>Home visit</td>
<td>33</td>
<td>3</td>
<td>8.3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>710</td>
<td>97</td>
<td>11.5</td>
<td>37</td>
<td>4.4</td>
</tr>
</tbody>
</table>

Patients with previously diagnosed hypertension

<table>
<thead>
<tr>
<th>Diastolic BP (mm Hg)</th>
<th>Visit</th>
<th>No</th>
<th>%</th>
<th>95–104</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st request</td>
<td>36</td>
<td>28</td>
<td>38.4</td>
<td>9</td>
<td>12.3</td>
</tr>
<tr>
<td>2nd request</td>
<td>11</td>
<td>9</td>
<td>40.9</td>
<td>2</td>
<td>9.1</td>
</tr>
<tr>
<td>3rd request</td>
<td>4</td>
<td>3</td>
<td>33.3</td>
<td>2</td>
<td>22.2</td>
</tr>
<tr>
<td>Home visit</td>
<td>5</td>
<td>3</td>
<td>33.1</td>
<td>1</td>
<td>11.1</td>
</tr>
<tr>
<td>Total</td>
<td>56</td>
<td>43</td>
<td>38.1</td>
<td>14</td>
<td>13.4</td>
</tr>
</tbody>
</table>

All patients

<table>
<thead>
<tr>
<th>Diastolic BP (mm Hg)</th>
<th>Visit</th>
<th>No</th>
<th>%</th>
<th>95–104</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st request</td>
<td>520</td>
<td>96</td>
<td>14.7</td>
<td>38</td>
<td>5.8</td>
</tr>
<tr>
<td>2nd request</td>
<td>132</td>
<td>25</td>
<td>15.2</td>
<td>7</td>
<td>4.3</td>
</tr>
<tr>
<td>3rd request</td>
<td>76</td>
<td>13</td>
<td>13.8</td>
<td>5</td>
<td>5.3</td>
</tr>
<tr>
<td>Home visit</td>
<td>38</td>
<td>6</td>
<td>13.3</td>
<td>1</td>
<td>2.2</td>
</tr>
<tr>
<td>Total</td>
<td>766</td>
<td>140</td>
<td>14.5</td>
<td>51</td>
<td>5.3</td>
</tr>
</tbody>
</table>

Table 3 Percentage frequency distribution of patients with a high diastolic blood pressure by visit of attendance

<table>
<thead>
<tr>
<th>Diastolic blood pressure ≥105 mm Hg</th>
<th>Visit</th>
<th>Newly discovered</th>
<th>All patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st request</td>
<td>29</td>
<td>78.4</td>
<td>38</td>
</tr>
<tr>
<td>2nd request</td>
<td>5</td>
<td>13.5</td>
<td>7</td>
</tr>
<tr>
<td>3rd request</td>
<td>8</td>
<td>8.6</td>
<td>5</td>
</tr>
<tr>
<td>Home</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>37</td>
<td>100</td>
<td>51</td>
</tr>
</tbody>
</table>

Table 4 Percentage frequency distribution of patients with a high diastolic blood pressure by visit of attendance

<table>
<thead>
<tr>
<th>Diastolic blood pressure ≥105 mm Hg</th>
<th>Visit</th>
<th>Newly discovered</th>
<th>All patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st request</td>
<td>29</td>
<td>78.4</td>
<td>38</td>
</tr>
<tr>
<td>2nd request</td>
<td>5</td>
<td>13.5</td>
<td>7</td>
</tr>
<tr>
<td>3rd request</td>
<td>8</td>
<td>8.6</td>
<td>5</td>
</tr>
<tr>
<td>Home</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>37</td>
<td>100</td>
<td>51</td>
</tr>
</tbody>
</table>
difficult
to
between screening
circumstances would "compensate"
with
screening
pressure.
It is
with increased risk for hypertension
screening. The
not
show
of
distribution
observer
performed
population
as a
blood
pressure
at
recorded
of
examination
Small numbers do
found.
recorded
in the
home visiting
unexpectedness
a
finding
themselves associated
yield of
in
their
general practitioner
study only
proportions
of
rate
response
was
due
to
difficulty,
Hasenson,
A
screening
did
confirm
increasing screening
As
are
We
can
calculate
screening
results,
however, found no association
between screening response and diastolic blood pressure. It is unlikely, therefore, that, compared
with screening for cervical cancer, factors associated
with increased risk for hypertension are not
themselves associated with attendance at screening.
We did not confirm the experience of Hodes et al in
finding a subsequently high prevalence of hypertension in screening non-responders, but in that
study only those non-responders who reattended
their general practitioner were reviewed.

As increasing screening effort only increased the
yield of hypertensives in a direct proportion to the
response rate the actual cost to capture different
proportions of the hypertensive population by
screening can be calculated.

We are grateful to Dr C Franklin and Drs T Worth, S
Hasenson, A Klein, and D Keene together with their
reception staff for help and co-operation; to Dr G
Walker, Dr F Murphy, and Professor JN Morris, who
were closely concerned with the design of the East
London Hypertension Study; and to Mr D Hill and
Mr S Evans for help with the data processing.

This study was funded as part of the East London
Hypertension Study by a grant from the City and East
London Area Health Authority.

References

1980; 281: 1024–5
2 Adler MW, Marson WS. Randomised controlled trial of
treatment of moderate hypertension in general practice:
3 D'Souza MF, Swan AV, Shannon DJ. A long-term
controlled trial of screening for hypertension in general
4 Hodes C, Rogers DA, Everitt MG. Identification and
treatment of arterial hypertension in general practice.
5 Hawthorne VM. Multiphasic screening in general
6 Thomson DMM, Rawlins DC. Hypertension and general
7 MRC Working Party. Randomised controlled trial of
treatment for mild hypertension: design and pilot trial.
8 Silman AJ, Murphy FW. Hypertension and general
Blood pressure distribution in responders and initial non-responders in a population screening study.

A J Silman and C M Locke

J Epidemiol Community Health 1982 36: 248-250
doi: 10.1136/jech.36.4.248

Updated information and services can be found at:
http://jech.bmj.com/content/36/4/248

Email alerting service

These include:
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/