Five-year age-specific incidence rates  
II: The accuracy of calculations of expected numbers of tumours

N. Cramer
From the School of Economics and Politics, Kingston Polytechnic

I. K. Crombie
From the Cancer Epidemiology Research Unit, University of Birmingham

SUMMARY Five-year age-specific incidence rates were shown to produce small but systematic errors in the calculation of the expected number of tumours in a hypothetical but realistic study population. Underestimates occurred at younger ages (under 55) and overestimates at older ages, with a small overestimate (0.22%) overall. Larger errors (up to 12%) were obtained when there was a rapid change in the single-year age structure of the study population. Interpolation between five-year rates will normally produce an inaccurate set of one-year rates. It is shown, with the example of a logarithmic interpolation, that these rates tend to produce errors of similar size to the five-year rates but with a small underestimate overall (0.37%). However, the interpolated rates produced the smaller errors (up to 1%) when the study population age structure undergoes rapid change. A method is suggested for partially correcting the error in the interpolated rates.

Epidemiological studies frequently compare the observed cancer experience of a study group with that of the general population. The expected number of tumours is normally calculated by applying five-year age-specific incidence rates to the accumulated person-years of observation subdivided by age. These studies are expensive and time-consuming and it is clearly worthwhile to consider ways in which the calculation of the expected numbers could be refined. One obvious possibility is the use of one-year rates for five-year rates, but such rates are not available from published data and would have to be derived by some method of interpolation, a lengthy and possibly error-prone procedure.

In this study we investigated the size of the errors arising from the use of five-year rates, comparing the results with those from a defined set of one-year rates. We examined a method of obtaining one-year rates by interpolating between five-year rates, determined the source and size of the errors which this entails, and suggested a possible solution.

Results

THE BASIC DATA
The one-year age-specific incidence rates corresponding to stomach cancer among women in the West Midlands, described in the companion paper, were used. The five-year incidence rates which would be observed if the one-year rates had occurred in a defined population (the 1961 England and Wales life table population) were calculated. An examination of the literature revealed that study populations (or more accurately the person-years at risk) typically exhibit, with advancing age, an initial rapid increase followed by a slow but ever-increasing rate of decrease. Such a study population defined by single years of age is described in Table 1, with the change in size across each five-year age group occurring by four successive equal annual increments.

EXPECTED NUMBERS
The expected numbers obtained using the five-year and one-year rates and the defined study population are shown in Table 1. Three important features emerge: (i) the majority of the tumours occur at ages 50–79, where the progressive increase of the incidence more than outweighs any decline in the size of the study population, thus, errors affecting these ages will tend to predominate in the all-ages figure; (ii) the pattern of the errors produced by the five-year rates consistently underestimate at ages under 55— and overestimate at ages over 60, the direction of the errors corresponding to the change which occurs...
Five-year age-specific incidence rates II: The accuracy of calculations of expected numbers of tumours

Table 1 Comparison of the expected numbers produced by five-year and one-year incidence rates

<table>
<thead>
<tr>
<th>Age group</th>
<th>Size of mid-one-year group</th>
<th>% Annual change(a) within five-year group</th>
<th>Expected numbers</th>
<th>Error of 5-year rates(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1-year rates (E(I))</td>
<td>5-year rates (E(I))</td>
</tr>
<tr>
<td>35–</td>
<td>500</td>
<td>40</td>
<td>0.116</td>
<td>0.105</td>
</tr>
<tr>
<td>40–</td>
<td>3 000</td>
<td>33.3</td>
<td>1.277</td>
<td>1.183</td>
</tr>
<tr>
<td>45–</td>
<td>7 700</td>
<td>11.7</td>
<td>5.473</td>
<td>5.335</td>
</tr>
<tr>
<td>50–</td>
<td>9 800</td>
<td>1.0</td>
<td>11.314</td>
<td>11.272</td>
</tr>
<tr>
<td>55–</td>
<td>9 550</td>
<td>-1.6</td>
<td>17.411</td>
<td>17.411</td>
</tr>
<tr>
<td>60–</td>
<td>8 500</td>
<td>-2.9</td>
<td>23.617</td>
<td>23.627</td>
</tr>
<tr>
<td>65–</td>
<td>6 800</td>
<td>-5.9</td>
<td>27.816</td>
<td>27.885</td>
</tr>
<tr>
<td>70–</td>
<td>4 350</td>
<td>-12.6</td>
<td>25.373</td>
<td>25.576</td>
</tr>
<tr>
<td>75–</td>
<td>1 900</td>
<td>-23.7</td>
<td>15.330</td>
<td>15.614</td>
</tr>
</tbody>
</table>

All ages -- -- 127-727 128-008 +0-281 (0-2)

\(a\). Annual increment as percentage of mid-one-year group.

\(b\). Difference between the expected numbers obtained from the five-year and one-year incidence rates.

\(c\). Error as percentage of one-year rate value.

The use of a five-year rate in the calculation of expected numbers is equivalent to applying five-one-year rates (equal in magnitude to the five-year rate) to the one-year population groups. Thus the expected number, \(E\), given by both one-year and five-year rates can be expressed in the form

\[
E = \sum_{j=1}^{5} N_j I_j
\]

where \(N_j\) and \(I_j\) are the one-year study population sizes and incidence rates. The \(I_j\) for the five-year rate will take a value approximately (see below) that of the central one-year rate \((I)\) whereas the \(I_j\) of the one-year rates will increase across the age-group. When the \(N_j\) increases over the five years (as at ages 35– to 50– in Table 1) extra weight will be given to the larger \(I_j\) (that is, \(I_4\) and \(I_5\)) of the one-year rates, and the one-year rate expected number will exceed that of the five-year rate. When the \(N_j\) decreases, the contribution of the larger \(I_j\) of the one-year rates will be reduced and the one-year rate expected number will be the smaller (ages 60– to 75–, Table 1). In the group 55–, the increase in the \(I_j\) balances the decrease in the \(N_j\), for this data set, giving identical expected numbers for the one-year and five-year rates.

**METHODS OF INTERPOLATION**

One-year rates are frequently obtained by logarithmic interpolation between successive five-year rates (for example,\(a\)). In any such interpolation it is normally assumed that the five-year rate \((I)\) is equivalent to the one-year rate of the central year of the five-year period \((I)\). But we have recently shown\(a\) that the five-year rate differs systematically from this mid-year rate, overestimating the one-year rate at younger ages, and underestimating at older ages. When logarithmically interpolated one-year rates were applied to the study population, they were found to produce small overestimates at the younger ages, and underestimates at the older ages (only some age groups are shown).

\begin{align*}
\text{Age} & \quad 40- & 50- & 55- & 60- & 70- \quad \text{All ages} \\
\text{Error from using interpolated one-year rates} & \quad +0.017 & +0.023 & -0.005 & -0.041 & -0.201 & -0.473
\end{align*}

Overall, the interpolated rates produce a small underestimate (0.37%), which, for this data set, is larger than the error produced by the five-year rates. In general, five-year rates will produce the smaller errors at ages 50–79 if the study population undergoes a small to moderate decrease across the five-year groups.

**ERRATIC STUDY POPULATIONS**

Some extreme forms of unusual one-year age structures are described in Table 2, and the ages at which they might occur are shown in Table 3; for example, exponential increase, or decrease, would be near the start, or end, of the study group. The total of person-years in each group was adjusted to correspond with the total numbers in the equivalent age groups analysed in Table 1.

The use of the five-year rates resulted in large errors in the expected numbers, and these were greatest with groups D and B (incidence rates from ages 70– and 75–) (Table 3). The size of the errors corresponded to the amount of change across the group, relative to the size of the central year, rather than to the type of the change. Erratic changes within
a group tend to cancel out to produce errors of around 1% (E, F). All these results would be predicted from a consideration of equation (1) and the one-year weighting effects discussed above. The interpolated one-year rates produced expected numbers which were in general similar to those of the true one-year rates. The largest errors occurred with groups F, D, and B (incidence rates from ages 65−, 70−, and 75−).

Discussion

This study has shown that the errors produced by five-year rates in the calculation of expected numbers can be predicted from the one-year age structure of the study population. The increase in the one-year size invariably seen at the younger ages will result in underestimates, whereas the decrease at the older ages will produce overestimates. These errors will partially cancel out, and overall there will be a small overestimate; because the majority of tumours occur at the older ages, their errors will predominate. Thus, five-year rates will tend to minimise any excess of observed over expected numbers, and produce conservative estimates of cancer risk.

The size of the error depends on the magnitude of the increase or decrease in the study population, with decreases producing the smaller errors. Progressive single-year changes in the range +5% to −15%, expressed relative to the central year of the five-year group, will produce errors of less than 1%. In contrast, a recent study has shown that the methods of recording and calculating incidence rates could introduce errors of between 1% and 8%. Since the efficiency of the process of cancer registration may introduce further errors into five-year rates, those errors associated with their use in calculating expected numbers will not normally be a major problem.

The non-equivalence of the five-year rate (I5) and the central one-year rate of the five-year period (I3) will introduce errors into one-year rates produced by simple interpolation. The errors in the calculation of expected numbers were of the same order as those produced by five-year rates. Further, because over all ages the interpolated rates tend to give
underestimates (usually at the older ages where most tumours occur) they will increase the apparent size of any observed cancer risk.

The error inherent in interpolation cannot easily be overcome. The relationship between $I_1$ and $I_3$ depends on the one-year age structure and incidence rates in the general population, and changes as these change with age. One solution would be to obtain the one-year population age structure and approximate one-year rates by interpolation, and then calculate ‘new’ five-year rates from these. The ratio of the observed to the ‘new’ five-year rates (they will always be found to differ) will give a measure of the error associated with interpolation and could be applied as a correction factor to the interpolated one-year rates. This procedure will only be approximate, particularly because of the difficulty in deriving one-year population structures from the published five-year data.

The conclusion from this work is that five-year rates will give reliable estimates of expected numbers, and that one-year rates obtained by simple interpolation procedures could give larger errors. The single-year age structure of the study population should be examined: only if it contains several age groups across which there are large changes in size will the five-year rates produce large errors and the interpolated rates be more accurate.

I.K.C. was supported by a grant from the Cancer Research Campaign.

Reprints from Dr. I. K. Crombie, A.R.C. Epidemiology Research Unit, Stopford Building (University of Manchester), Oxford Road, Manchester M13 9PT.

References

Five-year age-specific incidence rates. II: The accuracy of calculations of expected number of tumours.
N Cramer and I K Crombie

*J Epidemiol Community Health* 1981 35: 146-149
doi: 10.1136/jech.35.2.146

Updated information and services can be found at:
http://jech.bmj.com/content/35/2/146

These include:

**Email alerting service**
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/