Article Text

other Versions

PDF
Comparison of methods for modelling a count outcome with excess zeros: application to Activities of Daily Living (ADL-s)
  1. Paola Zaninotto,
  2. Emanuela Falaschetti
  1. Department of Epidemiology & Public Health, UCL, London, UK
  1. Correspondence to Paola Zaninotto, Department of Epidemiology & Public Health, UCL, 1-19 Torrington Place, WC1E 7HB London, UK; p.zaninotto{at}ucl.ac.uk

Abstract

Background Count outcomes are commonly encountered in many epidemiology applications, and are often characterised by a large proportion of zeros. Although linear or logistic regression models have often been used to analyse count outcomes, the resulting estimates are likely to be inefficient, inconsistent or biased.

Methods Data were taken from the first wave of the English Longitudinal Study of Ageing (ELSA). The main outcome measure is difficulty (ranging from 0 to 6) with ‘Activities of Daily Living (ADL-s)’, such as dressing, walking across a room, bathing, eating, getting in and out of bed and using the toilet. Four regression models specifically developed for count outcomes were fitted to the data: Poisson, negative binomial (NB), zero-inflated Poisson (ZIP) and zero-inflated negative binomial (ZINB). The models were compared using the Likelihood Ratio (LR) test of overdispersion, the Vuong test and graphical methods.

Results The plots of predictions showed that overall, the ZINB model fit best. Although the ZINB and the ZIP models showed similar fit, the LR test provided strong evidence that the ZINB had improved fit over the ZIP. Increasing difficulties with ADL-s were associated with fair/poor self-reported health, limiting longstanding illness and physical inactivity. The probability of not having any difficulty with ADL-s decreases with a limiting longstanding illness, increasing age, no education, fair/poor self-reported health and with not living with a partner.

Conclusion Models specifically developed for count outcomes with excess zeros such as ZINB can provide better insights into the investigation of the factors associated with the difficulties with ADL-s.

  • Activities of daily living
  • count outcome
  • old age

Statistics from Altmetric.com

Footnotes

  • Funding The funding is provided by the National Institute of Aging in the United States, and a consortium of UK Government departments coordinated by the Office for National Statistics. The developers and funders of ELSA and the Archive do not bear any responsibility for the analyses or interpretations presented here.

  • Competing interests None.

  • Patient consent Obtained.

  • Ethics approval Ethical approval for ELSA was given by the London Multi-centre Research Ethics Committee (MREC/04/2/006).

  • Provenance and peer review Not commissioned; externally peer reviewed.

Request permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.