Article Text

other Versions

PDF
Odd odds interactions introduced through dichotomization of continuous outcomes
  1. Lutz Philipp Breitling,
  2. Hermann Brenner
  1. German Cancer Research Center, Germany
  1. * Corresponding author; email: l.breitling{at}dkfz-heidelberg.de

Abstract

Background: Dichotomization of continuous variables before analysis has frequently been criticized, but nonetheless remains a common approach. We were interested in the effects of dichotomization of an outcome variable when two predictors are examined.

Methods: Assuming a log-normally distributed continuous outcome, a three-level and a binary independent variable, we evaluated the results that would be obtained by logistic regression after dichotomization. Different cutoffs, predictor effects and dispersions were examined, with a special focus on interaction terms.

Results: Depending on the specific parameter combination, dichotomization introduced sometimes substantial spurious interactions between the two predictor variables regarding their association with the outcome. These interactions could be assigned statistical significance even with modest sample sizes. Real-life data on sex × weight as determinants of gamma-glutamyltransferase provided a practical example of these issues.

Conclusions: The findings presented add a new aspect to the controversy surrounding dichotomization of continuous variables. Researchers should critically examine whether the validity of their results might be hampered by such phenomena.

Statistics from Altmetric.com

Footnotes

    Request permissions

    If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.